积分中的对称性

打印本文 - 下载本文〗〖0条评论 - 0推荐〗〖字数:1700字〗

【摘要】介绍几种常见对称性在重积分、曲线积分及曲面积分的计算过程中的几个结论。

【关键词】积分;轮换对称性;奇对称;偶对称

在积分的计算过程中,当积分区域具有某种对称性时,如果被积函数具有某种特性,这时可以利用对称性简化积分的计算。这里所讨论的对称性主要包括两个方面:积分区域关于坐标轴(或坐标面)的对称性和积分区域的轮换对称性。设Dn为一积分区域,所谓积分区域的轮换对称性是指当任一点P(x1,x2,…,xn)∈Dn时,有Pi(xi,xi+1,…,xn,x1,x2,…,xi-1)∈Dn,i=1,2,…,n。

在一元函数积分学中,我们有下面所熟悉结论:

若f(x)在闭区间[-a,a]上连续,则有

∫a-af(x)dx=0,f(-x)=-f(x)

2〖JF(Z〗a0f(x)dx〖JF)〗,f(-x)=f(x)

利用这一性质,可以简化较复杂的定积分的计算。对重积分、曲线积分及曲面积分也有类似的结论。下面我们根据积分范围的不同来介绍对称性在各类积分计算中的几点应用。

1对称性在重积分计算中的应用

对称性在计算二重积分?Df(x,y)dσ方面的应用。

结论1若f(x,y)在区域D内可积,且区域D关于y轴(或x轴)对称,则有

①?Df(x,y)dσ=0,f(x)为关于x(或y)的奇函数

②?Df(x,y)dσ=2?D1f(x,y)dσ,f(x,y)为关于x(或y)的偶函数。

其中D1为区域D被y轴(或x轴)所分割的两个对称区域之一。

结论2若f(x,y)在区域D内可积,且区域D关于原点成中心对称,则有:

①?Df(x,y)dσ=0,f(-x,-y)=-f(x,y),即f(x,y)关于原点成奇对称;

②?Df(x,y)dσ=2?D1f(x,y)dσ=2?D2f(x,y)dσ,f(-x,-y)=f(x,y),即f(x,y)关于原点成偶对称,其中D1、D2关于原点对称,且D1+D2=0。

结论3若f(x,y)在区域D内可积,且区域D关于直线L对称,则有:

①?Df(x,y)dσ=0,f(x,y)关于直线L奇对称;

②?Df(x,y)dσ=2?D1f(x,y)dσ,f(x,y)关于偶对称。

其中D1为区域D被直线L所分割的两个对称区域之一。

说明:若对D内关于直线L对称的任意两点P、Q,都有f(P)=-f(Q),(f(P)=f(Q)),则称f(x,y)关于直线L奇(偶)对称。

特别地,若区域D关于直线y=x对称,则当点(x,y)∈D时,有(y,x)∈D,这时积分区域D关于x、y具有轮换对称性。这时我们有:

Df(x,y)dσ=12?D[f(x,y)+f(y,x)]dσ

若f(x,y)=-f(y,x),即f(x,y)关于直线y=x奇对称,则?Df(x,y)dσ=0;

若f(x,y)=f(y,x),即f(x,y)关于直线y=x偶对称,则?Df(x,y)dσ=2?D1f(x,y)dσ。

计算三重积分?Ωf(x,y,z)dν时,也有类似的结论。

若积分区域Ω关于面xoy面(或yoz面或zox面)对称,记Ω1为区域Ω被坐标面所分割的两个对称区域之一。则有:

①?Ωf(x,y,z)dν=0,f(x,y,z)为关于z(或x或y)的奇函数;

②?Ωf(x,y,z)dν=2?Ω1f(x,y,z)dν,f(x,y,z)为关于z(或x或y)的偶函数。

若积分区域Ω关于x,y,z具有轮换对称性,即当(x,y,z)∈Ω时,(y,z,x),(z,x,y)∈Ω,这时有?Ωf(x,y,z)dν=?Ωf(y,z,x)dν=?Ωf(z,x,y)dν

=13?Ω[f(x,y,z)+f(y,z,x)+f(z,x,y)]dν

版权声明: 请尊重本站原创内容,如需转载本范文,请注明原文出处:中国范文模板网
原文地址:http://www.fanwenmuban.com/lw/jxlwlw/200616.html

    相关评论

    评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)