股票市场的多重分形与风险关系

打印本文 - 下载本文〗〖0条评论 - 0推荐〗〖字数:1500字〗

摘要:本文通过对我国和美国股票的收益率序列进行多重分形分析,得出结论:两国股票市场均具有多重分形性,我国股票市场的多重分形特征更明显。实证研究又发现股票市场收益率不遵循随机游动,标准差作为风险的度量不完全合适。结合两国股票市场实际风险的情况,得到风险与多重分形之间的对应关系。

资本市场理论认为收益率遵循随机游动,其分布近似于正态或对数正态。实证研究发现证券收益率不服从正态分布,标准差作为风险的度量不再合适。随着对资本市场混沌特性的研究,人们开始用分形来研究风险问题。现阶段随着对金融市场分形性质研究的进一步加深,又产生多重分形问题,多重分形分析向人们展现了各个股市的混沌现象,使人们感觉到风险的存在。

本文研究的问题是:不同股票市场的风险不一样,它们的多重分形特征也不同,那么风险与多重分形间有什么关系呢?利用MF-DFA方法对中、美两国股票市场的多重分形特性进行研究与比较,结合二者的实际风险情况,得到多重分形与风险的关系。

证券市场风险的分形分析

当今资本市场理论是以理性投资者、有效市场和随机游动三个关键概念为基础,由于投资者的理性和市场的有效,收益率遵循随机游动。因此,收益率的概率分布近似于正态或对数正态,风险用收益率的标准差度量。但是,在对股票市场收益率分布进行正态性检验时,发现其明显地不拟合于正态分布的。只有在其背后的系统是随机的时候,标准差作为风险的度量才有意义。股票市场收益率的分布不呈现正态,所以我们关于风险的统计测度——标准差——亟需修正。

英国水文学家赫斯特在20世纪40年代研究了有偏随机游走,提出一种新的统计量即Hurst指数(H)。赫斯特指数有三个不同的类型:(1)H=0.5;(2)0≤H<0.5;(3)0.5Mandelbrot在20世纪60年代再次对非随机时间序列作了全面研究,指出证券市场收益率服从一族分形分布。分形维(D)描述一个时间序列如何填充其空间的,是所有对于生成这一时间序列的系统发生影响的因素的产物。分形维是由时间序列如何填充其空间决定的。Hurst指数与时间序列分形维的关系:D=2-H。一条线分形维为1,随机时间序列的分形维为1.5。宋学锋提出用“混沌度”度量系统的复杂性,其中分形维就是“混沌度”的组成部分。刘卫东等人也提出用分形维度量证券投资风险。

证券市场的多重分形分析

随着对金融市场分形性质研究的进一步加深,又产生了下述问题:一个分形维数能否很好地描述市场的分形结构,价格增量的不同部分的相关性及其在时间轴上的分布是否一致。要回答这些问题必须对分形局部结构进行更细致的研究。如果分形的局部结构是均匀一致的,那么一个整体分形维数就能很好地描述它;如果分形结构是非均匀的,仅用一个分形维数只能描述收益率波动的宏观面貌,无法对其局部进行细致的刻画,必须用多重分形来对局部结构进行更细致的分析。K.MATIA,Y.ASHKENAZY等人对股票和商品的价格波动的多重分形特性进行了研究。胡雪明、宋学锋等曾对我国股票市场进行了多重分形分析。

所谓多重分形,是定义在分形结构上的由多个标度指数的分形测度组成的无限集合。它刻画了分布在子集上的具有不同标度和标度指数的分形子集的局部标度性。从几何的观点看,组成分形集的若干个子集的标度、分形维数都不同。多重分形理论间接刻画价格波动。

版权声明: 请尊重本站原创内容,如需转载本范文,请注明原文出处:中国范文模板网
原文地址:http://www.fanwenmuban.com/lw/zqxglw/182881.html

    相关评论

    评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)