暖春数学知识的特征与学习方式的选择

打印本文 - 下载本文〗〖0条评论 - 0推荐〗〖字数:2900字〗

[摘要]知识的特征不同,对学习方式的要求也就不同。有些数学知识具有经验性、演绎性或对象性,从学生的日常生活经验和知识基础出发,开展探究学习是必要的,也是可能的。有些数学知识具有超验性、合情性或程序性,对于这些知识,只能通过接受学习来获得。有效地选择学习方式,要综合考虑知识的特征、学生的特征、教师的特征和社会的特征。

[关键词]数学知识;接受学习;探究学习

新课程强调自主、合作、探究等学习方式,有利于培养学生的创新精神和实践能力。但是,仅有这种学习方式是不够的,因为数学知识有不同的特征。本文主要论述数学知识的特征,进而阐述不同特征的知识需要选择不同的学习方式:有的宜选择接受学习方式,有的宜选择探究学习方式。这里的接受学习有两层含义:一是指有的内容不易探究、发现,需要教师在课堂教学中加以呈现;二是指学生对于有的内容的理解有限,在不能完全理解的情况下,要先接受下来,进行相应的训练,并在以后的学习中再逐步加深理解。

一数学知识的特征

数学是关于数和形的科学,它与物理学、化学、生物学等学科不同,并不以客观世界的具体物质运动形态为研究对象。“数”和“形”都抽象地存在于人的理性思维世界。从根本上说,数学对象来源于现实世界,是具体事物的抽象。但是,有许多数学知识,则显示出超验性、合情性或程序性。这些特征,对数学教学具有特殊的要求。

1知识的超验性和经验性

数是抽象的产物。“我们运用抽象的数字,却并不打算每次都把它们同具体的对象联系起来。我们在学校里学习的是抽象的乘法表,而不是男孩的数目乘以苹果的数目,或者苹果的数目乘上苹果的价钱……同样在几何中研究的,例如,是直线,而不是拉紧了的绳子。”[1]数学的研究对象,是人们对现实世界抽象的结果,甚至是对抽象的对象进一步抽象的结果。正因为如此,数学才有今天的蓬勃发展。因而,数学的研究对象与日常生活经验就有了远近之别:有的与学生的生活和知识经验较为接近,他们可以在自己的经验基础上探究并建构起这些数学知识,这些知识具有经验性;有的是人类理性思维的结晶,远离学生的生活和知识经验,学生很难通过自己的经验探究、发现这些数学知识,这些知识具有超验性。

人们没有见过自然数“1”,只见过一头牛、一只羊。自然数、分数、小数可以通过一些表征物来表示,较为直观,而负数就不直观了。无理数较为抽象,也很难找到一个具体事物作为原型。即便是最精确的尺子,也很难把无理数量出来。无理数是人类长期探索的结晶,是人类理性思维的结果。无理数是无限不循环的小数。人们对于“无限”难以把握,对于什么是“不循环”更不能直接感受,也没法说清楚。在中学,通常是用反证法来证明是一个无理数。从直观的角度来看,这个证明并没有给我们提供具体的信息。因而,学生很难靠自己的经验来建构无理数这个概念。如果说可以把看作边长为1的单位正方形对角线的长,那么,对π、e如何理解呢?难怪有中学生提出这样的问题:圆周率π是否可能以某个特别长的数作循环节而成为循环小数?代数式更加抽象,离我们的经验也就更远。对于数的运算而言,自然数的运算法则较为直观;小数和分数的运算法则介于具体与抽象之间;实数与代数式的运算法则超越了我们的经验,只能由自然数、有理数的运算法则迁移过来。总之,像无理数、虚数这样一些数学知识,学生不可能用自己的经验“探究”出来。为此,我们可以把这些知识直接告诉学生,让他们接受下来,然后让学生通过自己的理性思维逐步地加以消化、理解。

数学知识并不都具有超验性,大量的数学知识具有经验性。例如,田地的面积用“亩”丈量,用分数表示“部分”的大小,用数据描述一个“事件”发生的概率等,都是一些很具体且可以通过经验来获得的数学知识。这些知识都具有经验性,学生可以通过自主活动、积极思考、主动探究来建构。

2知识的合情性和演绎性

数学知识的获得,需要经过严格的演绎证明。只有经过严格演绎证明的结论,才能称为数学知识,也才是可以接受的。数学知识的可证明性亦可称为演绎性。数学知识的获得,往往要经过不完全归纳、试验、猜测等探索与合情推理的过程。特别是在中小学,由于学生的认知水平较低,许多结论是通过举例和不完全归纳得到的,是“混而不错”的,因而数学知识又显示出“合情性”。

比如,对于数的运算律的学习。自然数、分数乘法的交换律较为直观,可以通过画图、举例来说明。当然,这种直观的说明具有相当的深刻性。2×3=3×2,3×4=4×3,让学生感受一下,便可得出:a×b=b×a。这只是感受一下,只是一个猜想,而不是自己的发现、创造,也不是证明。有理数乘法的交换律更像一种规定性的东西。规定的合理性源于“运算律的承袭性”。自然数的乘法、分数的乘法、小数的乘法都满足交换律,于是,为了保持运算律的承袭性,有理数的乘法也满足交换律。在实数范围内,由于出现了无理数,想通过例子直观感受一下实数乘法的交换律就较难了。初中数学教材中的处理是一笔带过:在实数范围内,加法、乘法的交换律、结合律,乘法对加法的分配律仍然是成立的。

陈省身先生曾说:“数学的主要方法是逻辑推理,因之,建立了一个坚固的思想结构。”①如此,中小学数学教学为何不追求严密的逻辑推理呢?如果遵循逻辑推理的要求,就要从匹亚诺公理系统和自然数乘法的定义出发,对自然数乘法的交换律进行证明。而证明实数乘法的交换律需要用到有理数的基本序列、极限等知识。这样的严密逻辑推理,谁能受得了。因而,相对于学生的认知水平,这些知识无需证明,也不可能证明。对于小学生而言,2×3=3×2,举个例子就行了。

“符号法则不能证明。人们只关心这个法则在逻辑上是否允许。这些法则是任意的,取决于使用上的方便,例如受承袭性原则的制约。我请求你们一般地不要把不可能的证明讲得似乎成立。大家应该用简单的例子使学生相信,或有可能的话,让他们自己弄清楚。从实际情况看,承袭性原则所包含的这些约定关系,恰好是适当的,因为可以得到一致方便的算法。”[2]

正因为如此,举个例子来说明问题,只是为了让学生更好地理解、接受某些知识,充其量只是一种合情推理,并非是证明,也不是探究。教材中的这种处理符合儿童的认知规律,也符合这些知识产生的实际。对教学而言,关键在于如何结合不同年龄阶段学生的特征,依据学生原有的知识基础,进行解释性的阐述。事实上,长期的教学实践也是这样做的,并没有什么不好。

既然有些数学知识不可能证明,也不宜证明,在初步理解的基础上,先接受下来,到知识有了一定的积累、认知水平有了一定的提高后,再进行证明,亦是合乎情理的。比如,对几何的学习,开始的时候,可以画一画,量一量,感受一下“三角形的内角和是180°”。这与学生的经验较为贴近,也较为直观。但是,到了初中阶段,必须让学生体会证明的必要性,进而让他们学习演绎证明。否则,学生就只会停留在“测一测,量一量”的状态。随着学习的深入,学生能够用逻辑的方法加以证明,这亦是学习数学的基本要求。

版权声明: 请尊重本站原创内容,如需转载本范文,请注明原文出处:中国范文模板网
原文地址:http://www.fanwenmuban.com/lw/jxlwlw/201029.html

    相关评论

    评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)